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Multiparticle interactions? 

:O 

S J GOLDSACK 

Department of Physics, Imperial College of Science and Technology, London, U K  

MS received 12 August 1971 

Abstract. A review is given of some recent work on the phenomenology of multiparticle 
interactions of hadrons. The treatment is in breadth rather than depth. 

1. Introduction 

When two hadrons collide at high energy, their interaction may lead to one of many 
final states. They may undergo elastic scattering, or they may react to form a two body 
or quasi-two body state. They are however much more likely to form a multiparticle 
final state. Figure 1 gives an approximate breakdown of the interaction cross section 
for K mesons on protons. At high energies the total cross section tends to a constant 
value of about 21 mb, and the elastic scattering is about 3.0 mb. Other quasi-two body 
states amount to about 1.5 mb at 10 GeV/c and appear still to be decreasing with energy. 
Since the elastic scattering is presumably mainly the diffractive shadow of the inelastic 
processes, it is clear that a description of the high energy interactions which ignores 
the multiparticle states is at best incomplete. 
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In spite of this, many-particle states have received very little attention until the last 
year or two. There are several reasons for this. The many body problem is notoriously 
difficult, and the many body problem in strong interactions, themselves only poorly 
understood, is not a field of much interest to fundamentzl theorists. 

On the experimental side, work has often been restricted to ‘easy’ topologies, either 
because of the limitation of measuring facilities, or because of the uncertainty of how 
to analyse the results anyway. However, in recent years a large amount of data have 
accumulated (though they are not often available in a useful form in the literature), 
and at the same time, perhaps because of the paucity of new fundamental ideas in theory, 
a number of theorists have given attention to the problem of multiparticle phenomeno- 
logy. This has led to a certain amount of progress, which it is the purpose of this article 
to review. 

The difficulty of the problem starts with the adequate description of the individual 
events. If there are k particles in the final state, each complete event is described by 
( 3 k - 4 )  variables. This is therefore the dimensionality of the phase space in which 
they can be mapped. Already, with only four particles, there are eight independent 
variables, and the results presented in the form of a few effective mass plots and four- 
momentum transfer distributions give a totally inadequate description of the whole 
system. 

In practice, however we find experimentally that most of the available phase space 
is empty, a circumstance which greatly simplifies the analysis, since the distributior- 
within the occupied parts of phase space can be studied with reasonable precision with 
the statistics presently available. In particular, it has been known for many years from 
cosmic ray studies, that the interactions always lead to low transverse momenta for all 
the particles? so that the region of phase space actually occupied is restricted to a ‘shell‘ 
of rather constant thickness around the hypersurface defined by the constraints that 
all the transverse momenta are zero. This hypersurface can be referred to as longitudinal 
phase space, and has dlmensionality k - 2 .  We shall return to this in a later section. 

The dynamics of our problem is contained in a transition amplitude T, giving the 
transition rate from the incoming two-particle state to some particular quantum state 
of the final multiparticle system. It is related to the cross sections which are the results 
of experiment by the well known ‘Golden Rule’ 

1 ”  

where we have written LIPS as shorthand for Lorenz-invariant phase space 

The integration is carried out over all the variables of the problem except those with 
respect to which the distribution is required. If all the variables of integration are 
exhausted one gets the total cross section. 

If the amplitude T were known for all final states, the problem of hadron physics 
would be solved. However we are far from being in that position; T is extremely 
t Note, however, that this corresponds to the forward peaking of two body interactions. If at a later stage we 
wish to study the multiparticle states in regions with high transverse momenta, the problems will be cor- 
respondingly more difficult. In two-body processes, work is now being done to study large momentum 
transfers, where cross sections are several orders of magnitude smaller than in the forward peak. Multiparticle 
events are at present only being seriously studied in the equivalent of the forward peak. 
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complicated. For a k particle state it is a function of the 3k - 4 variables ; we shall discuss 
some of its other properties later. The aim of experiment is to provide the information 
needed to guide us in determining these properties. 

Unfortunately, the phase space integration is also very complicated. It is well 
known that for three or more particles, even the ‘pure phase space’ distributions, 
obtained by setting T equal to a constant, require numerical integration when three 
or more particles are involved. The difficulty of interpreting the experimentally observed 
distributions, is to unfold the effects of the dynamically trivial phase space. There 
are variables which are essentially ‘flat’ in a pure phase space distribution. Examples 
of these are most single-particle angular distributions and the density distribution on 
the Dalitz plot. However, these are the exceptions. Most quantities of dynamical interest 
have nontrivial phase space distributions, and it is part of the job of the phenomenologist 
to unfold the effects of the dynamics described by the amplitude. 

An alternative approach is to construct a mathematical model for the amplitude ; 
it is then possible to carry out the phase space integrations and so derive predictions 
for the actual measured distributions. One may possibly adjust a few parameters of 
the model, to obtain a ‘fit’ to the data. However the credibility of the model as a descrip- 
tion of the real dynamics of the hadron interactions is greater, the fewer adjustable 
parameters are required. 

In the following sections we shall discuss examples of both these approaches. 

2. Multiplicity distributions 

The simplest experiments to perform are those which study the charged particle multi- 
plicity distributions, without regard to the nature of the particles produced, or to the 
neutral particles. Most workers agree that the distributions are well represented by 
some form of Poisson distribution, with a mean which increases slowly with incident 
energy. However there is some disccssion as to what is distributed this way. A discussion 
of the various possibilities has been given by Wroblewski in his review talk at the Kiev 
Conference (Wroblewski 1970a) but probably the best formula is that of Wang (1969), 
who suggests that the distribution should be in pairs of produced particles. (In Wang’s 
model there is local charge conservation, so the particles are assumed to be correlated 
in pairs.) The probability of k ,  charged particles in the final state is therefore 

The variable is k ,  - 2 because we have two charged particles in the initial state. 
Figure 2 shows the results of the Serpukhov photographic emulsion group for the 

mean multiplicity in 7c- interactions. The figure is taken from Anzon er a /  (1970). 
The curves superimposed on the data are an law, consistent with the law 
predicted by Rotelli (1969) on the basis of a form of the statistical model, and the lg E 
dependence expected from a multi-Regge pole model (eg Chew and Pignotti 1968). 
These results seem to support the power law, but the difference is not great. Figure 3 
shows the results of Jones et a1 (1970) who have carried out a cosmic ray experiment, 
using a large liquid hydrogen target, with a total absorption calorimeter to determine 
the energy. This will give mainly proton interactions, and the data include laboratory 
energies an order of magnitude higher than the Serpukhov results. Here the experiment 
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seems to support the lg E dependence. Possible objections can be raised to the experi- 
mental techniques of both groups, so a final answer may have to await experiments at 
the CERN intersecting storage rings, or at the new accelerators. In the mean time it is 
the author's opinion that the results of Jones et a1 would have to be too far in error 
for the power law to be given much credence. 

p,, ( G e V I c )  
3 4 5 6 8 IO I5 20 30 

3 4 5 6  8 IO 
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Figure 2. Average prong number (n, ,)  in T[ p interactions as a function of the centre of 
mass energy. The data are from the Serpukhov emulsion group (Anzon et ai 1970). Curve A. 
(n,,) 1 E: 35; curve B (n, ,)  c IgE,. 
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Figure 3. Average prong number in pp interactions. Data are from the Echo-Lake cosmic 
ray experiment (Jones 1970). The curve is the Ig s dependence predicted by a multiperipheral 
model. 

3. Channel cross sections 

After the multiplicity distributions, the most immediately accessible features of the 
multiparticle interactions are the individual channel reaction cross sections. The lower 
curves of figure 4 show the total cross sections for the reactions 7c'p + p7ct n + x -  and 
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n-p  + pn-n+n-no. These are very typical of all the cases, showing a rapid rise from 
threshold, followed by a fall away at high energies. It is apparent that the rise from 
threshold is due to the opening up of the available phase space volume. However, for 
a k particle final state, the phase space volume behaves asymptotically like sk-'t, so 
that it continues to increase at high energies. The fall off must therefore be a property of 
the amplitude. To separate the two effects we can divide the cross section by the total 
phase space volume. This was first done by Muirhead and Poppleton (1969) for the 
case of antiproton annihilations. It was carried out systematically for many different 
reactions by Hofmokl and Wroblewski (1970, figure 4 is reproduced from their paper). 

I 2 3 5 IO 20 2 3 4 5  IO 20 
,blab (GeV/c 1 

Figure 4. Total cross sections for (a)  x + p  + PX*IT+~T- and (b)  rr-p + prr+n+n-no. The 
lower curves are the raw data;  the upper curves are after division by total phase space. 
Curves are from Hofmokl and Wroblewski (1970). 

The upper curves show the cross sections a* adjusted for phase space in this way. The 
results are very beautiful straight lines on the lg plot, showing that a relation of the type 
a* K S - "  is a very good parameterization of the data. The value of n was obtained for 
each of the processes, and figure 5 shows n as a function of multiplicity, for a series of 
different types of reaction. 

The result illustrated in figure 5 is most striking; for each class of reaction the value 
of n increases by exactly one for each increase in multiplicity. This is clearly telling us 
something quite simple and important. In fact there is little doubt what it is. As we 
have already seen the interactions do not fill phase space ; rather, they are restricted 
to that shell around the longitudinal phase space which we have discussed above. This 
shell occupies a smaller and smaller fraction of the total phase space as the energy 
increases, and instead of increasing without limit at high energies, it tends, approxi- 
mately, to a constant$. Of course the reason for the restriction to low transverse 
t Throughout this article s has its usual meaning of the squared energy in the centre of mass frame. 
$ Actually it increases logarithmically. 
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momenta is itself a property of the amplitude T. However, it is so universal, and appears 
to be a property so independent of all other properties of the amplitude that it seems 
not unreasonable to factor it out along with the phase space, dividing by the volume, 
not of total phase space, but of longitudinal phase space, represented by LIPS/S~- ’, 
which tends to a constant at high energy. 

C 

8 

2 4 6 a IO 
Mulitiplicity 

Figure 5. Logarithmic slope n of the cross sections corrected for phase space, as a function 
of multiplicity (from Wroblewski 1970a). np;  0 pp:  x K p ;  A yp; 0 Pp + pions. 

This was done by Hansen et a1 (1970), some of whose results are reproduced in 
figure 6 .  The way in which different multiplicities give the same slope is most convincing, 
and even more striking is the comparison with the slopes of the corresponding two-body 
processes. To a first approximation, at  least, these slopes are the same, ranging from 
about two where nonstrange meson exchange is possible, to about four in reactions 
where baryon exchange is required. There is little doubt that this behaviour is a strong 
indication of multi-Regge behaviour of the amplitude at high energies. 

These results are summarized in table 1, which is taken from the paper of Hansen 
et a1 (1970). 

Table 1. Logarithmic slope parameter n for many body processes compared with the value 
for corresponding two-body processes (from Hansen et al 1970) 

Many-body 

Exchange n Reaction 
Exchange 

n4 

Dominant Secondary 

Pomeron 0.2 
S = 0 meson 2 (n, K, p) + p + (n, K, N ) +  N + pions S = 0 meson Pomeron. baryon 2 
S = 1 meson 2.5 K - p  + Afpions S = 1 meson Baryon 3 
Baryon 4 K - p  --t E - + K + p i o n s  Baryon S = 1 meson I 
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Figure 6. Total cross sections corrected for 'longitudinal phase space' for reactions of four 
different classes (from Hansen et al 1970). (a) rr-p + p+pions;  (b) pp + N + N  +pions; 
(c) K - p  + A+pions; (d) K - p  + E-K+pions. 

4. Topological cross sections 

It is interesting to note that, unlike the cross sections for individual completely defined 
final states, the cross sections for events selected only by their number of charged prongs 
(irrespective of the number of neutral particles associated) rise from threshold to a 
maximum, after which they remain almost constant (figure 7). This seems to be charac- 
teristic of the so called 'inclusive' reactions, about which we shall say more later. 
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0 001 

Wroblewski (1970b) has pointed out that the data seem to suggest a simple regularity. 
If one plots the cross section for k particle states as a function of the mean centre of 
mass energy per particle, the cross sections seem to lie on a series of curves which differ 
only by a factor of two in cross section for each increase in multiplicity. That is 

' j  

where the brackets imply functional dependence. This is illustrated in figure 8. 
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Figure 7. Topological cross sections, as a function of the beam momentum (top scale) and 
of the centre of mass energy (bottom scale). 
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Figure 8. Illustrates Wroblewskl's proposed simple regularity (see text) 0 04. A ob x 7 
0 0 8 x 4 ,  U U , , X ~ , A O , , X  16, 0 014x32  

Taken with a constant asymptotic cross section this would imply, contrary to 
experiment, a constant mean multiplicity at high energies. Moreover, the preliminary 
results from Serpukhov (Anzon et al 1970) show that the six-prong cross section is 
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higher than the four-prong in the 50GeV region (see figure 9). It follows that the 
constancy of cross sections can only be approximate. 

Moreover, if the mean multiplicity is increasing with energy, while the total cross 
section remains constant, individual channel cross sections must decrease slowly. 
Wroblewski’s conjecture is, moreover, inconsistent with the Poisson distribution men- 
tioned in 4 3. 

I 

1 

Mu It i plici ty 

Figure 9. Multiplicity distribution for rr-p interactions at 60 GeV. The data are from 
Anzon et al(1970) and are inferred from interactions in emulsions. 

5. F(f) distributions 

While on the subject of ‘dividing out’ phase space effects, we should mention the work 
of the ABBCCHW collaboration (Honecker et a1 1971), who have studied the distribution 
of the four-momentum transfer t for the interactions of the type K-p  + nucleon + pions. 
For each multiplicity they have evaluated 

daldt 
daldt (phase space) 

F ( t )  = 

where do/dt (phase spa’ce) is the calculated shape of the differential cross section with 
I TI2 = 1. This function should give the dependence of the square of the matrix element 
on t, averaged over all the other variables. The results shown in figure 10 show that 
the distribution is not very dependent on multiplicity and that each one is close in 
shape to the curve l/(ni: - t )  which is the pion propagator. It is not clear at  present 
whether this must be regarded as having any fundamental significance. 

6. Resonance production 

In the previous sections each final state was treated independently of the mechanism 
by which it was produced. In practice a very important feature of all such processes 
is the resonance nature of the interactions between pairs or larger groups of the final 
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state particles. This being so, one may wonder whether there is any sense in combining 
all these processes in the above analysis. Should, say, a five particle state with a resonance 
not be classed as a quasi-four-body state? It is one of the nice features of the asymptotic 
behaviour described above that it actually does not matter, since the energy dependence 
at high energy is the same. This does imply, however, that the resonance fractions do 
not decrease with energy, since we should have the same energy dependence for, say, 
the process np --f pnp as for the process np nnnp of which the first forms a subset. 

Four-momentum transfer to nucleon (GeV') 

Figure 10. Distributions of the four-momentum transfer from proton to nucleon in reactions 
IK + p + nucleon + n (pions), after dividing by the expected phase space distribution (from 
Honecker et al 1971). The crosses represent the pion propagator. 

Indications are that this is at least approximately true. Wroblewski, in his talk at the 
Kiev Conference, gave a compilation of the fraction of p mesons and of A in pi-p inter- 
actions over a wide range of incident momentum. Though the errors are large, there 
is no indication that there is a trend upwards or downwards. Similar results have been 
found for k-p  interactions (Goldsack 1971)t. Table 2 shows the fractions of K*-,  po 
and A' + found in the channel k-p-k'plr'n-n- at 6 GeV/c and 10 GeV/c. There 
are several interesting features. First, one notes the extremely high proportion of 
resonances, more than one per event on the average. Secondly, there seems little change 
in the fractions between the two energies. Lastly, it may be relevant to point out that 
the fraction of K* when A is produced, is about the same as the fraction of K* in the 
whole sample. The same is true of the fraction of A when K* is produced. (The fraction 
of p when K* is produced is less than in the whole data but this is to be expected, since 
each requires a lr-.) Thus it seems that the simultaneous K*A production, although a 
substantial contribution to the channel, does not represent any cooperative behaviour 
between the two resonances. 

There is room for much further work of this type. At present there is too little 
uniformity in the methods of fitting the resonance fractions to allow much confidence 
in comparison between the work of different groups, and there is in any case little work 
reported in the literature. 
I' Also ABCLV collaboration, submitted to the Amsterdam International Conference, June 1971 
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Table 2. Resonance production in K - p  + K o p x + f n -  at 6 GeV/c and 10 GeV/c 

Resonance fractions % 

6 GeV/c 10 GeV/c 
Final states 

A +  +Kox-x-  13+4 15+ I 
pK*x-n+ 25+6 21 + 3  
pKpox- 2 5 1 5  31 + 2  
A'+K*n- 20+5 15+4 
pK*-po 1 7 1 6  19+2 
~ K - A + R - x -  0 + 2  0 + 2  

Total K* 6 7 1 8  55+4 
Total A 3 3 1 7  34+4 
Total po 42+8 5 0 i 4  

K* fraction of A 60+ 10 56+6 
A fraction of K* 3 0 1 7  27+6 
K* fraction of po 40+ 10 38+3 

7. The importance of the pomeron 

The results presented in 6 3 show how each individual production process decreases 
as a power of the squared energy. At the same time the elastic scattering cross section 
is substantially constant. This is interpreted as due to the diffractive nature of the 
elastic scattering, which in Regge theory is parameterized by the exchange of a 'pomeron'. 
That diffractive processes can also give rise to dissociation of the colliding particles 
has been appreciated for some time. It is perhaps most clearly seen by consideration 
of the so called Deck effect, illustrated in figure 11. One incident particle dissociates 

( 0)  (61 

Figure 11. The Deck effect. (a) Illustrates the effect in a pictorial manner; (b )  the equivalent 
multiperipheral graph, where the scattering of the particle c is assumed to be by pomeron 
exchange. 

virtually into a pair of intermediate particles to which it is strongly coupled. While 
in this state one of the virtual particles undergoes scattering at the target, generating a 
real three-particle final state. At high enough energies this scattering will also mainly 
be diffractive. Such processes are of course inelastic, insofar as they scatter particles 
out of the incoming channel. As such they contribute to the absorption of which the 
elastic scattering is a shadow. However these simple Deck processes must themselves 
be a shadow of still more deeply inelastic processes. The cross section for diffractive 
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processes is not expected to decrease rapidly with energy, so that their contribution 
must become increasingly important as the energy increases. This emphasis on the 
Deck-like processes, which giies a rather pictorial view of the diffraction dissociation 
process, should not hide the fact that resonant states can also be excited by pomeron 
exchange. 

At the energies currently available for study in a systematic way with the bubble 
chamber, the effects of the pomeron are certainly not dominant except in certain special 
channels. This is evident since processes to which pomeron exchange must contribute 
at high energy are still seen to be decreasing at the highest energies presently accessible. 
However, certain specially favoured processes do seem to show the diffractive effects 
at moderate energies. In particular, the four body final states with incident pions, 
associated with the production of the A,  meson, have cross sections decreasing rather 
slowly with energy, as seen in figure 6. Later we shall see that, by examining the structure 
of certain other processes sufficiently closely, evidence is found that the pomeron is 
contributing even there. 

8. Longitudinal phase space analysis 

It has been emphasized above that the most striking single property of the amplitude 
for any process is its peripherality. All particles share a cut-off in the transverse momen- 
tum with a fairly constant range, so that the events are confined to that shell within the 
phase space which was referred to in 0 1 as the longitudinal phase space (LPS). I t  is 
therefore of interest to display the data in a way which shows how the events are distri- 
buted with respect to the remaining variables, which define their position within the 
LPS. A convenient way of doing this has been provided by Van Hove (1969). We shall 
see that this provides us with a means of finding the contributions of diffractive events. 

Apart Gom the transverse momentum, each separate particle i is characterized by 
the longitudinal component of its momentum qiS. The position of each event in LPS 
is therefore specified by the set of quantities 4,. However, these are not independent 
quantities; if the qi are measured in the centre of mass frame, they are constrained by 
the momentum conservation to satisfy Cqi = 0. It is therefore possible to display the 
distributions of the values for three particles on a two dimensional scatter plot, where 
the longitudinal momenta are measured with respect to a set of three axes at 120" to 
each other as in figure 12. It is easy to see that the momentum conservation is auto- 
matically satisfied for any point in the plane. If we can negiect the energy associated 
with the transverse motion, there is the additional constraint X ( q 2  +m2)1'2 = sl". 
This defines the kinematic limit for the plot, and in practice all points cluster close to 
the boundary. Some examples are shown in figure 13 (Bartsch et a1 1970~).  The points 
now form an essentially one dimensional distribution, and it is therefore possible to 
display them as a histogram in terms of the angle 6 which is also defined in figure 12. 

At very high energies a multiperipheral model predicts the ordering of the longi- 
tudinal momenta according to the order of the particles in the corresponding Feynman 
ladder graph ; at more moderate energies one may expect this to be broadly true, though 
the boundaries may be less sharply defined. Figure 12 also shows the regions of the 
LPS plot which may be expected to be populated by events produced by the mechanisms 
indicated. In particular there is a region between 90" and 120" which corresponds to 
the graph in which the target nucleon and the created pion are at one vertex, while the 
t q has the same meaning as pI1 used in 5 11  
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incident particle is at the other. This is the region where one would expect to find 
events created by the diffraction dissociation of the proton. If this process is giving a 
large contribution to the single meson production one may expect to find a large peak 
in the distribution in this neighbourhood, followed by a sharp drop near 120" since 
the diffractive process does not readily throw mesons into the 'wrong' hemisphere. 
Note that dissociation G f  the beam particle would lead to a similar peak near 150" 
but diffraction dissociation of a pseudoscalar meson into two other similar mesons is 
forbidden by spin and parity conservation. This behaviour is clearly visible in figure 14. 
(Dissociation of the pion and the proton are both possible in the pox  channel, and 
figure 13(6) shows that both processes seem to be occurring.) 

-6 \ 

Figure 12. The Van Hove longitudinal phase space plot, drawn here for the case n T p  + x-nOp 
at 16 GeV/c, and showing the definition of the angle 6'. Inset are the multiperipheral graphs 
which can be expected to contribute in the different regions of the plot. 

Though we have already seen that the cross section for single pion production 
appears to be falling rapidly with energy according to the S-" rule, one can still see if 
there is a subclass of events which persists to high energy by evaluating the parameter n 
for different regions of the LPS angle. Such an analysis, performed by Rinaudo et a1 
(1971) is shown in figure 15. It shows clearly that, in the diffractive region, n is indeed 
close to zero, though it is large elsewhere. This shows that in these channels the effects 
of pomeron exchange are just below the surface, and will presumably show as a flattening 
of the total cross section as we increase the energy still further. Recent analyses of the 
single pion production by k mesons described in 4 17 have used a multiparticle Veneziano 
amplitude to describe the nondiffractive part of the data, and estimated quantitatively 
the fraction of the cross section which is diffractive. The results vary between 25 % to 
50 % in different three-body channels around 10 GeVlc. 

The generalization of the Van Hove hexagon plot to four bodies has also been 
given by Van Hove; there are now three independent longitudinal momenta, so the 
four values can be plotted in three dimensional space with axes referred to a set of four 
planes intersedting at a point. The equivalent of the hexagon, which provides the kine- 
matic limit for the plot, is a cube-octohedron, a 14-sided semiregular solid figure 
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illustrated in figure 16. Again the events cluster in practice close to their kinematic 
limit, because of the low transverse momenta. It is therefore possible to study the 
complete distribution as a two dimensional scatter plot in a pair of polar angles corre- 
sponding to  the Van Hove angle. However, that presentation is rather remote from the 
physical processes involved, so that its significance is difficult to appreciate. In figure 17 
is shown an example where the points have been projected onto the surface of the cube- 
octohedron, which has then been unfolded to make a two dimensional distribution. 
However, in many cases there are well defined 'leading' particles. For example, the 
proton is nearly always backwards, and the kaon forwards in reactions k ip  -, k'px'n-. 

Figure 13. Examples of the longitudinal phase space plot, showing how events cluster near 
the kinematic boundary, in an essentially one dimensional distribution. (a)  n C p  -+ pa+a0,  
at 8 GeV/c, 2168 events; (b)  n + p  + nx'a', at 8 GeV/c, 1825 events; (c) a - p  -+ pn-a', at 
16 GeV/c, 903 events; (d) a - p  -+ pn-CO, at 16 GeV/c, 299 events; (e) K - p  + A + + K - n - ,  at 
10 GeV/c,683events;(f)x-p --* A + + a [ - a - . a t  16GeV/c, 1308 events(Bartschetal197Oc). 

In this case only four adjacent faces of the cube-octohedron are populated, and a neater 
presentation is that given by Kittel et a1 (1970) where events are described by two 
longitudinal momenta, those of the produced (ie nonleading) particles. However, 
instead of the longitudinal momenta themselves, one plots the reduced variables 
x i  = 2qi/Cilqil. At high energy Cqi approaches sl/*, so that in this limit these variables 
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Figure 14. Examples of the LPS analysis (Bartsch et al197Oc). Showing the sharp drop near 
120" associated with dissociation of the nucleon. The curves are the predictions of the CLA 

model (4 15). The lower curves show how these are composed of contributions from different 
multiperipheral processes. The baryon exchange is undoubtedly exaggerated in this work 
by the existence of resonances which are neglected in the CLA model. P stands for pomeron, 
B for baryon and M for meson in labelling the exchange. (a) and (b) a + p  -+ prr'rr', at 
8 GeV/c, 2168 events, p and A" out, 1456 events, ~ CLA model; (c) and (d) rr'p -+ 

nrr'rr', at 8 GeV/c, 1825 events, ~ CLA model. 

are equivalent to the variables introduced by Feynman to describe single particle 
distributions (see 0 11). The variables used here have the advantage that the approximate 
constraint of conservation of energy is replaced by the exact constraint Elxi[ = 2, so 
that the points lie in the surface, not just below it. A scatter plot of x1 against x2 is 
equivalent to the four corresponding faces of the cube-octohedron, and figure 18 shows 
how events may be expected to be distributed if they are created according to the 
mechanisms indicated. In particular, the events due to the diffraction dissociation of the 
beam and target respectively into three particles are to be found in the upper right and 
lower left quadrants of the plot. The results of this analysis for negative pion interactions 
at 11 and 16 GeV/c are shown in figure 19, due to Kittel et a1 (1971). Here x1 and x2 refer 
to the longitudinal momenta of the x+  and the produced x- respectively. In figure 20 the 
value of the exponent n is shown for different areas of the plot. Again we find that the cross 
section is nearly constant in the regions where diffraction dissociation is to be 
expected. We can discern regions corresponding to the dissociations E -  + x- E + X -  

and p -+ p x + ~ - .  

9. Isotopic spin analysis 

In general the isotopic spin analysis of many-particle states involves many more ampli- 
tudes than there are accessible experimental channels, so that no valuable decomposition 
can be achieved. However, in the case of positive pion interactions with protons we 
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Figure 15. (a)  Distributions in the Van Hove angle for np + nxp at 4 GeV!c (chain curve, 
977 eV), 5 GeV/c (full curve, 2648 eV) and 8 GeV/c (broken curve, 2134 eV), and (b)  the 
value of the logarithmic slope parameter n at each angle. Data are from the Bonn, Durham, 
Nijmegen, Paris EP, Torino collaboration (Rinaudo et ai 1971). 

Figure 16. The cube-octohadron plot; the generalization to four-particle final states of the 
Van Hove hexagon. K - P  + P K + K ; ~ ; ,  at 16 GeV/c. 
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Figure 17. Example of the application of the cube-octohadron plot for n - p  + n - n + n - p  
at 16 GeV/c (Bartsch et al 1970). 

'p ff-ll+p 
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Figure 18. Modified LPS plot for four particles. x1  and x2 are the reduced longitudinal 
momentum variables for the produced particles. 

have a pure I = 2 system, and for three-body states there are three accessible channels, 
which are sufficient to fix the two amplitudes and their relative phase. The way in 
which the amplitudes can be chosen is not unique but it is of special interest to choose 
states in which the nucleon and produced pion form a system of isotopic spin $ and 3 
respectively. Diffraction dissociation can be expected to contribute only to the former. 
The full analysis in this way for 7c+ at 4, 5 ,  8 and 16 GeV/c has been presented by 
Boesebeck et a1 (1971). In figure 21 this analysis is combined with the LPS analysis. 
We notice that the parameter n is close to zero for the system with isotopic spin $ and 
near the angle of 90" where diffractive effects are expected to be most important. The 
I spin 2 does not show this feature, so that the cross section associated with nonzero 
isospin exchange has no energy independent component. At still higher energy we can 
expect this channel to become dominated by diffractive effects, giving a pure I = $ 
nucleon-pion system. 
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Figure 19. Example of the application of the modified LPS plot to the case n-p + n-n-x+p 
at 11 and 16 GeV/c. In each bin of the plot, the cross section has been indicated by the 
length of the line. (a)  Number of events unweighted; (b )  number of events weighted. The 
energies are distinguished by sloping the 11 GeV/c value to the left and the 16 GeV/c value 
to the right. In the lower plot the events have been weighted to allow for the phase space 
probability of each event (see Kittel et al 1970). 
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Figure 20. The logarithmic slope parameter n in different regions of the LPS plot for the 
case n-p + n-x-n[+p at 11 and 16 GeV/c. The small value of n in the upper right and 
lower left quadrants indicates the dominance of the diffractive mechanism in the regions. 

10. Summary on diffractive effects 

We can conclude this section on the diffractive effects or pomeron exchange processes 
by remarking that at energies at present being studied, the obvious effects amount to 
about 1.5-2 mb, mainly in the four particle final states. It is, however, uncertain how 
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much of the multineutral final states, which are not measured in the bubble chamber 
experiments, may have their origin in the pomeron exchange. On looking more closely 
it is possible to see that several other processes are likely to become diffraction dominated 
at higher energies, and it is possible, though by no means proved, that these processes 
may eventually dominate every channel. 

60 90 I20 60 90 120 150 
Angle o C degree 1 

Figure 21. The logarithmic slope parameter n as a function of the Van Hove angle for the 
processes l r tp  + x+(zN)+ at  4, 5 ,  8 and 16 GeV/c where contributions for (a)  f and (b)  4 
isospin for the dissociated nucleon have been separated. 

11. Inclusive interactions 

Every few years there comes a new idea which provides a novel way of looking at data 
to cast fresh light on the subject. A paper by Feynman (1969) has given rise to a wave 
of activity in the analysis of data, the re-analysis of old data, and the construction of 
new experiments. This new growth industry is the study of interactions from what 
Feynman calls the inclusive points of view. 

So far multiparticle states have been mainly studied by isolating samples of events 
with the same well defined final state (Feynman calls this an exclusive interaction) and 
attempting to understand its dynamics in isolation from other channels. Now as we 
have seen, each such channel has a cross section which is a small and rapidly varying 
fraction of the total cross section. While each final state goes through these rapid 
variations however. the total cross section is a smooth function of the energy, apparently 
almost constant at  high energies. It is clear that in some degree the variations of indivi- 
dual channels are due to competition from other processes, and that in some ways the 
description of the whole may be simpler than its parts. Feynman therefore suggests 
studying the momentum distribution of the individual particles irrespective of the 
mechanism by which they are created (ie summed over all the different final states). 
This is of course particularly attractive to the experimenter, since the bubble chamber 
man can now incorporate all his unfitted events, and the counter physicist has a new 
outlet for his one-armed spectrometer. This accounts for the wave of activity?. 
t A further boost for the study of reactions from an inclusive point of view has been given by the demonstration 
by Mueller (1970) that the cross section for a reaction a +  b + c +  anything can be related by unitarity to the 
elastic three-particle scattering amplitude, a + b + C -, a + b + C just as the two-body total cross section 
a + b+ anything can be related to the elastic scattering a + b --t a + b. This leads to a ne.w type of Regge 
phenomenology which may prove to be of great importance (see Chan Hong-Mo et a! 1971). 
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Based on simple arguments of a partly intuitive nature, Feynman suggested &hat 
such a reaction would have a constant total cross section at high energies, and that the 
single-particle momentum spectrum could be written? 

where j is an invariant function, since dp,, dp:/E is the Lorentz-invariant phase space 
element. It was suggested by Feynman that at high energies this function could be 
expected to be dependent on pI1 and s only through the ratio x = 2 p , , / ~ ” ~ .  In this sense 
the momentum spectra should ‘scale’, and be given by the universal function f(p,, s). 
The first tests of this idea have appeared in the literature in the last few months, and 
no doubt many more will follow. 

This conjecture of Feynman is closely related to another due to Beneke et a1 (1969) 
and usually referred to as ‘limiting fragmentation’. Here it is argued that the centre of 
mass frame is not a preferred frame of reference for high energy collisions, since the 
particles certainly do not ‘stop on each other’. It is assumed that most of the particles 
are produced as fragmentation products of either the incident or the target particle, 
and that the fraction of pions produced slow in the centre of mass (so called pionization) 
would tend to zero at very high energy. In this case the produced particle momentum 
distribution would tend to a limiting form in the rest frame of the fragmenting particle. 
In fact as we shall see there is no evidence at present that the produced particles separate 
into two groups associated with the beam and target particles at the energies at present 
being studied. 

Figure 22 shows the distributions in the variable x, integrated over the transverse 
momentum, of the pions from the reactions 7c-p -+ 7c’ +anything and E-P -+ E- +any- 
thing obtained by Biswas er a1 (1971) in an experiment at 18.5 GeV/c. The distributions 
are also shown separated according to the number of charged prongs. These are 
logarithmic histograms, and fit very well to an exponential distribution on each side of 
zero. This sharp peaking in the cross section is associated with the 1/E factor in the 
phase space volume element, which makes the phase space element large when the 
energy is small. This kinematic effect, which is most important for pions, because of 
their small mass, can be removed by weighting the events according to the energy when 
forming the histogram. This is equivalent to plotting 

d20 
dP:. 

Alternatively the distribution in the rapidity variable y = 3 lg(E + p,,)/(E-pJl) can be 
usedf. Neither approach leads to a distribution which shows a dip at  p , ,  = 0. 

In the negative pion distribution in figure 22 one sees in addition a strong ‘leading 
particle’ effect, which comes from the identity of the produced particles with the incoming 
particle in this case. The effect gets less important as the multiplicity increases. We 
should also note that the slope of the exponential fall off is greater on the negative side 
of zero for both types of particle. 
t p,, , p, and E are the single particle longitudinal and tranverse momenta and energy E = m2 +.U:, + p : .  
1 This variable, also introduced by Feynman, has the following properties. Under Lorentz transformations 
along the collision axis it changes only by an additive amount so that distributions in y are Lorenz invariant. 
The invariant phase space element can be shown to be proportional to dp: dy, so that there is no singularity 
at low energies. 
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Figure 22. Distributions of Feynman's reduced longitudinal momentum variable x for the 
pions in (a )  ~ + p  + X-  +anything and (b )  X - P  + X- +anything at 18.3 GeV/c. (c) shows the 
ratio R of the proton to pion momentum which characterizes the symmetry frame of the 
produced pions (see 0 12 of the text). 

Similar distributions are found for single particles in proton-proton collisions. 
Kinsey et a l t  have studied pp interactions of 28.5 GeV and have tested the hypo- 
thesis that the distribution described by the invariant function f(p,, , p,) factorizes so 
that 

The results do not support this suggestion. One might then wonder if the alternative 
factorization 

which is not equivalent, since E is a function of both pIl and p,, may be valid. This has 
also been tested by Biswas et a1 (1971) again with negative results. 

A number of papers have tested the scaling hypothesis. A supercollaboration of 
groups studying positive and negative kaon interactions have compared the ko  produc- 
tion in reactions k* + p  + ko (or EO)+anything (Beupre 1971). The fraction of events 
leading to a neutral kaon, as a function of energy, is found to be constant at about 40 %. 
Taken with the constant total cross section this implies a constant cross section for the 
inclusive reaction, and one which is approximately equal for k+  and k- .  The distribu- 
tions in the variable x are shown in figure 23. The agreement of the different energies is 
t See Wroblewski (1970a). 
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excellent, but the k +  and k -  differ appreciably. Note that here no account has been 
taken of the 1/E factor, so that this is not strictly Feynman scaling. It is early to reach 
conclusions about this but it seems possible that leading particles scale better without 
the energy factor, while the produced pions certainly need it. 

- I O  - 0 5  0 0 5  -10 - 0 5  0 0 5  I O  
x=p;f p;," for KO 

Figure 23. Distribution of the reduced longitudinal momentum for the Ko in the reactions 
K + p  + Ko+anything and K - p  -+ ifo+anything (a )  K - p  + R o + X o  at 10 I GeV c. 
x K + p  -+ K o + X + +  at 8 2  GeV'c.(b) K'p -+ K o + X + + .  5 GeV c ,  x 8 2 G e V  c 

Another interesting result of the kaon group is in the study of the effective mass 
distribution of 'anything' in the inclusive reaction. The ubiquitous exponential distri- 
bution appears again to give at least a first order description of the data, but this time 
a rising exponential with the mass. This result was quite unexpected by experimentalists, 
but does appear to have been a prediction of some thermodynamic models, and to be 
mainly a phase space effect. The data are shown in figure 24(a) and 24(b), this is broken 
down by multiplicity. 

Finally in this section on inclusive reactions, figure 25 shows the variation with 
energy at  a series of fixed values of x of the differential cross sections. The results have 
been derived by Chen et al (1971) from measurements by Anthony et al. Clearly the 
results give very good support for the scaling assumption for the produced pions, though 
they do not test it down to very low values of x. 

We shall undoubtedly be hearing much more about experiments of this type in 
the months and years to come. 

12. Symmetry frame for produced pions 

It seems appropriate here to mention the work of Elbert et al (1971) on the inclusive 
reactions 

and 
rt- + p .+ rt- +anything 

rt- + p -+ K' +anything at 25 GeV/c. 
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Figure 24. (a) The effective mass distribution for the system X in the inclusive reactions 
K * p  + Ko+X.  A, K + p  + K o + X + +  at 5 GeV/c; B, K'p + K o + X + +  at 8.2 GeV/c; 
C, K - p  + f(O+X0 at 10.1 GeV/c. (b)  The same data broken down by multiplicity. The 
left hand side of (b)  shows K + p  -+ KO + X +  ' at 8.2 GeV/c, while the right hand side shows 
K - p  + KO +Xo at 10.1 GeV/c. The full curves in the upper half of (a) are phase space and 
in the lower half exponentials have been fitted to the data. 

20 F] .. 

Figure 25. Scaling behaviour for the produced pions. The distributions, taken from Chen 
et al (1971), show the invariant function , f ( x , p , , s )  evaluated for a series of fixed values 
of x and at p ,  = 0, as a function of beam momentum. (a) n-p + n+ + anything; 
(b)  x -  + p -+ n- + anything. 

To ensure that only produced pions were included, not contaminated with protons 
or the 'leading' negative pion positive pions were considered only in the forward, and 
negative ones only in the backward hemisphere. The longitudinal momentum distribu- 
tions of the two types of particle are shown in figure 26. The data are fitted very well by 
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the form exp( --aIp,,l) for each set. However, the slope a is different in the forward and 
backward directions. That this should be so is not too surprising, since the colliding 
particles have different masses. However the authors hit on the idea of carrying out 
Lorenz transformations along the axis to find whether there exists a frame of reference 
in which the distribution is symmetric, and if so which it is. To test for symmetry they 
applied a chi-square test to the fit obtained assuming exponentials with equal slope. 
To define which frame of reference is being used they took the ratio R of the proton 
momentum to that of the pion. In figure 27 the chi-square probability is plotted against 
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Figure 26. Longitudinal momentum distribution for the pions produced in the forward 
direction (n') and the backward direction ( n - )  in n - p  --* K' +anything at 25 GeV,c. Data 
are from Erwin er al(1971j. 
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Figure 27. Search for a frame showing symmetry for the produced pions. The x 2  probability 
for a symmetrical distribution of the type exp( -alplllj is plotted against the ratio R of the 
incoming momenta of the proton and pions in the assumed reference frame. A, centre of 
mass system; B, quark system. 

this ratio. It is found that symmetry exists in that frame in which the momentum ratio 
is 1.5. One intriguing possible explanation is that the collision is really between quarks, 
and that the symmetry frame is the quark-quark centre of mass. The meson production 
would then be envisaged to occur in some way such as that illustrated in figure 28. 

A difficulty with this explanation is that the symmetry is only found in the quark 
frame when the mesons produced in all multiplicities are included ; the results for 
different multiplicities are shown in figure 29 where it is seen that the ratio is strongly 
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multiplicity dependent. Biswas et a1 (1971) have also tested their data for a symmetry 
frame, and figure 22(c) shows the momenta ratio R, plotted against the multiplicities 
for IC+ and n- interactions. Whether this must be taken as an indication against a 
quark explanation is not clear to the author. 
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Figure 28. Schematic quark-quark collision 

Pp IP” 

Figure 29. Search for the symmetry system in the data of figure 26 separated according to 
multiplicity. 

13. Models for multiparticle states 

We have seen in the preceding sections that the low transverse momenta and the 
behaviour of the cross section as a function of energy are strikingly suggestive of a 
multi-Regge pole exchange. Successful models for the amplitude must undoubtedly 
take this into account. However, we also know that there are resonances between 
particle pairs or larger groups of particles, which are due to poles in the amplitude. 
These poles are not present in the straightforward Regge pole exchange amplitude. 
Following the ideas of Dolen et al (1968) concerning the duality between resonances 
in any given channel, and Regge poles in the crossed channel, it is probable that the 
resonances are taken into account in some average sense in a Regge model. Develop- 
ments of the Veneziano model to multiparticle states have permitted this feature to be 
included explicitly in an amplitude which has poles corresponding to resonances, and 
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shows Regge-like behaviour when the subsystem energies are large. In the following 
sections we shall discuss briefly the multi-Regge model and its developments, and then 
proceed to describe some of the features of the Veneziano model. 

14. Multi-Regge model 

In the pure multi-Regge model, it is assumed that the multiparticle final state is reached 
through a series of particle exchanges as illustrated in figure 30. The exchanged particles 
are assumed to belong to Regge trajectories, exactly as in a two particle scattering 
process. A further assumption is that the complete amplitude ‘factorizes’. This means 
that it is a product of factors sa(‘) for each exchange, where a(t) is the appropriate Regge 
trajectory function, and factors to describe the couplings at the vertices. 

t ,  p‘p 

Figure 30. Regge ladder graphs for (a )  general collision and (b)  three-particle final state. 
The notation used in the multiperipheral Regge model is defined in this diagram. 

Explicitly, if we consider the three-particle process illustrated in figure 30, the 
amplitude is written 

The functions G, which contain the Regge residue functions, are not fixed by the 
model, so it is usual to adopt exponential functions in order to obtain the peripheral 
behaviour observed in experiment. The quantity o12 is an angle, concerned with the 
relative polarization of the Regge poles. As nothing is known about this, it is usual 
to neglect the dependence on this quantity; s l0  and s20 are scale factors usually taken 
as 1 GeV’. 

The trajectory functions depend on the assumed exchanges. They are usually linear 
functions of the four-momentum transfer t written a(t) = z0 + r’(t) where a. is the inter- 
cept of the trajectory, and a’ its slope. For diffractive processes it is to assume a flat 
‘pomeron’ trajectory with cto = 1 and a’ = 0. This guarantees a constant cross section 
for a two body process which is produced by pomeron exchange. 

In principle the Regge amplitude is supposed only to apply in the region where all 
the subsystem energies are large, so that for three particle states, only that region in 
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the centre of the Dalitz plot should be correctly represented. Experimentally, of course 
events are found to reside mainly near the edge of the plot, so that the Regge model 
describes only a small part of the data. Moreover, it is a property of the amplitude 
itself that it favours that part of phase space where one of the subsystem energies is 
large at the expense of the others. This is especially true if one exchange is a pomeron, 
when the large value of a makes the amplitude most important where the energy is 
shared so that all the other subsystem energies are small, which is precisely the diffractive 
effect which it is supposed to describe. 

As a recent application of a pure Regge model, and one where it gave a very satis- 
factory description of the data, I would like to mention the work of Cho et a1 (1971) 
on the process k -  + n  + k-  + x -  + p  at 5.5 GeV/c. This channel is relatively free from 
resonances, so that the model appears to fit the data quite well without severe restrictions 
on the subsystem energies. Events were selected to give low four-momentum transfer 
to the nucleon but no other cuts were made in the data. The Van Hove LPS plot is 
shown in figure 31. There are two clear peaks, which can be seen to be associated with 
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Figure 31. Van Hove LPS plot for the process K -  + n  + K - I - p  at 5.5 GeV. Data are from 
Cho et al(1971). 

two dominant processes. These are the diffractive dissociation of the neutron (8 N 100") 
and events where the negative pion is fast, and the kaon slow in the centre of mass system, 
which give 8 N 180". In the Regge exchange picture these must be due to exchange of 
the K* trajectory, with the pion at the top vertex. The authors assumed therefore 
pomeronipion and K*/pion exchanges. They first selected the events from the LPS 
plot to give pure samples of each process and used these to fix the normalization of the 
two processes. They then added the two amplitudes and obtained a very fine fit to 
the overall data (figure 32). The diffractive contribution was about 60%. 



54 S J Goldsack 

I f I I ‘ I  

2 0  

t 40u 0 1.4 1.8 Mass 2.2  ( G e V )  2.6 3 0 

0 
f 

E 40 

L 20 
d 
z o  

In ” 

c 
L 

5 
1.0 1.4 1.8 2.2 2.6 3.0 

0.6 1.0 1.4 1.8 2.2 
Mass 1 G e V )  

I I I I 

0.6 1.0 1.4 1.8 2.2 
Mass 1 G e V )  

Figure 32. Effective mass plots for K - n  + K-rr-p at 5.5 GeV fitted with the multi-Regge 
model. (a) K - p ;  (b )  a-p;  (c) K - a - .  

15. Developments of the Regge model 

The first reasonably successful attempt to provide an amplitude whose validity could 
be extended to the regions near the edge of the Dalitz plot was the model of Chan 
Hong-Mo et a1 (1968). This is a purely phenomenological model, with an amplitude 
chosen so that it is Regge-like when all the subsystem energies are large, but whenever 
one of the subsystem energies becomes small, the corresponding factor in the amplitude 
becomes constant, so that the behaviour follows phase space alone. Explicitly, the 
amplitude is written 

a, b, c, g are constants, which determine the energy at which the transition from phase 
space to Regge behaviour occurs, and the relative coupling strengths in two regions. 
The first success of this model was in explaining why there is a forward peak in the 
angular distribution of the A hyperons in kaon interactions which is absent in corre- 
sponding 71 meson proton processes. Essentially this is due to the possibility of pomeron 
exchange in the latter case, against which baryon exchange is unable to compete. For 
A production the baryon exchange must compete only with K meson or K* meson 
exchange, which allows baryon exchange effects to be more important. These results 
are shown in figure 33. However, the model has little physical content, and is not much 
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used in recent work. It does, however, still provide an amplitude which can be used 
to describe high-multiplicity interactions where the Veneziano model is impracticable, 
and, there being relatively little energy per particle, there is no region of phase space 
where all subsystem energies are large, so that a pure Regge model would not be appro- 
priate anywhere?. 
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Figure 33. The angular distributions for A production in K - p  interactions, with the 
predictions of the CLA model. The forward peak, which develops with increasing multiplicity 
is due to baryon exchange graphs. 

16. Venedano model 

It is not appropriate here to give a full account of the Veneziano model. However, 
before discussing its applications, a summary of some of its very beautiful features, 
which often seem quite close to the physical facts, seems appropriate. A fuller account 
can be found in articles by Chan Hong-Mo (1969) or by Jacob (1969). 

In figure 34(a) we illustrate a scattering process between spinless particles. We know 
that the amplitude must have a series of poles in the variables s to give resonances in 
between particles a and b. These resonances should occur at values of s which are on 
the appropriate Regge trajectory, that is, for values of s such that (ao +a's) is a positive 
integer$. a. is the intercept and a' the slope of the corresponding trajectory. To provide 
crossing symmetry, the amplitude must also have poles in the cross channel invariants t .  
These will occur at positive integer values of the t channel Regge trajectory : however, 
since for a physical scattering process t is always negative, these latter poles are not in 
the physical region. The remaining property required of the amplitude is that it must 
have Regge-like behaviour when s is large, 

t An amplitude which permits the inclusion of resonances in the subsystems in a dual manner, has been 
proposed by Plahte and Roberts (1969) and may be a better phenomenological amplitude for high multiplicity 
reactions, in which resonances are important. 
3 We assume for simplicity here that the trajectories are exchange degenerate. For the general case when the 
trajectories must be given definite signature see the articles quoted (Chan Hong-Mo 1969, Jacob 1969). 
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Veneziano discovered that these properties are provided by the Euler p function, 
more often called B4 in the present connection 

This has poles as required if U, is a positive integer. It also has poles if a, is a positive 
integer, but double poles are cancelled since if a, and a, are both integers there is also 
a pole in the denominator. It can also be shown that the function gives a Regge behaviour 
when s is large, so that it provides an explicitly dual amplitude. The remaining, and 
crucially important, feature is that the residue at the Ith pole on the trajectory in the s 
channel is a polynomial of order 1 in the variable t. Now t is linearly dependent on the 
cosine of the scattering angle, so that the residue is a polynomial of order 1 in cos 8 also. 
This means that it describes mainly scattering by a resonance with angular momentum I ,  
as required for the resonance on a Regge trajectory. (Note, however, that the polynomial 
is not precisely P,(cos e), so that the resonance is not in a pure angular momentum state. 
There are resonances at the same energy in all the angular momentum states up to the 
Ith. This is the well known phenomenon of ‘daughters’ which is probably a weakness 
ofthe model, though there are some cases, notably the p meson, where an s wave resonance 
which could be a daughter, does appear to exist. It is often called the E . )  

The extension of the Veneziano model to three and more particle final states became 
possible when a generalized beta function was developed by Bardakci and Ruegg (1968). 
The process a + b -+ c + d + e illustrated in figure 34 is now described by an amplitude 
which is a function of five independent variables, and the B ,  function is therefore written 
as a function of these variables. The variables chosen are the squared subenergies 

t 
I 
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Figure 34. Schematic diagrams illustrating Veneziano four and five part functions. (a) Four 
point diagram ; (b) pole expansion of the four point amplitude gives a Breit-Wigner amplitude 
corresponding to scattering through a resonant stage. (c) Five point diagram; (d) single 
pole corresponds to the formation of a resonance and its decay into three particles. ( e )  
Double pole corresponds to the formation of a resonance followed by its decay into another 
resonance and a single particle, with subsequent decay of the second resonance. 
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between adjacent particles in the five-point graph si,i+ As with B,, there are poles in 
these variables, corresponding to resonance production, and the amplitude tends to 
Regge behaviour when the subsystem energies become large. The behaviour is thus 
just what we find experimentally. Again the Ith pole along a trajectory has dominant 
behaviour corresponding to orbital angular momentum 1, though daughter contributions 
are usually present. 

The B ,  function as an amplitude to describe many-particle states has one additional 
feature, not relevant to the B, function. There exist double poles when two of the sub- 
system energies have simultaneously the appropriate values. If the subsystems both 
involve the same particle the double pole cancels in just the same way as in B,. This 
means that all allowed tree-graphs such as in figure 34(e) are included. For example 
the formation of a resonance, followed by its decay into a second resonance and a stable 
particle, is correctly included. In fact, the residue at a pole is always a sum of B ,  func- 
tions; in particular near the first (s wave) pole in the variable sI2 the B5 amplitude can 
be approximated 

This can be interpreted as the formation of a resonance, with the pole term forming 
the Breit-Wigner and the B, describing the three-particle decay, or, if the pole is below 
threshold for a real process, the pole term is the Feynman propagator and the B ,  
describes a virtual two-particle scattering process. It thus becomes possible to connect 
processes of different multiplicity. The process a + b  -, c + d + e  can be related to the 
process a + b  -, c + z  together with the coupling constant for the zde vertex?. This is 
illustrated in figure 35. 

d -  e 

a 

U ;-I-( e 

b 

Figure 35. Illustrates the factorization property of the E ,  amplitude. The amplitude for the 
process a + b + c + d  + e  is described by a five-point function with trajectories U, V, X, Y,  Z .  
By evaluating it a t  the pole corresponding to the particle Z, it is connected to the amplitude 
for the scattering a +  b + c+z ,  together with the Z coupling constant. 

Further, because of the crossing symmetry of the amplitude, it is possible to connect 
some apparently quite separate physical processes with a common amplitude, and so 
fit a very large amount of physical data with a common analytic description. There 
are very few free parameters, though it is difficult to say precisely how many there are 
in a given calculation. 
t This possibility, of course, is much more fundamental than the Veneziano model : it is assumed to be a feature 
of the pole structure of the amplitude T i n  general. However the Veneziano model gives an explicit analytic 
representation of Twhich permits the residues to be explicitly evaluated in terms of the values in the physical 
region. 
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lnapplications the trajectory functions to be used are chosen to provide the resonances 
experimentally observed. To this extent there is freedom in the model which amounts 
to putting in what one wants to find. However the trajectory parameters of all the main 
resonances are now well known, so that there is not much freedom to adjust these. 
Mixing diagrams with different permutations can cause cancellation of certain reson- 
ances, and this sometimes provides free parameters. 

In its simple form, the Veneziano amplitude is a real scalar function, and the 
resonances are infinitely narrow. This is well known to violate unitarity, as well as 
being contrary to experience. It is usual to introduce a small imaginary part to the 
trajectory function to take care of the widths, which introduces some additional free 
parameters (and in fact spoils the factorization properties). When there is an odd 
number of pseudoscalar particles among the external legs of the process to be described, 
it is necessary that the amplitude should be pseudoscalar. This is usually arranged by 
introducing a pseudoscalar kinematic factor. For the three body final state this can 
only take the form r , , , , pyp ;p<p i  where 6 is the Levi-Civita antisymmetric tensor, and 
the momenta are those of any four of the five external particles. This factor has itself 
very powerful effects on the angular and effective mass distributions, introducing angular 
momentum barrier effects, affecting the spin alignments of the resonances. While the 
effects are those observed, they are also a necessary feature of any realistic amplitude, 
satisfying parity conservation, and not unique to the Veneziano model. 

A further weakness of the model is that it does not take account of the spin of the 
external particles. With bosons it is often possible to allow for spin by introducing a 
'kinematic factor' though there appears to be no unique prescription for this. There is 
however no way at  present of allowing for the spin of fermions, and it is usual to assume 
that the sum over spins will be sufficiently well represented by treating the particles as 
spinless. This is certainly a bad approximation, and since baryon trajectories do  not 
show exchange degeneracy, and as there are not the restrictions on allowed exchanges 
from spin and parity and/or g parity which affect bosons, the model is very poorly 
defined for these cases. This has not prevented some very satisfactory applications, 
but it remains one of the reasons why, in its present form, it is difficult to take the model 
entirely seriously. 

With these preliminary remarks, let us look at some of the results obtained. It is not 
possible here to give an extensive review?, but in order to emphasize how much data 
can be simultaneously described, I have taken a case which is 'classic' rather than very 
recent. This is the application by Chan Hong-Mo et a1 (1970) to the three processes 

k + + p  -+ k o + n + + p  

k - + p  -+ko+n-+p  

n - + p  + k o + k - + p .  

Through application of crossing symmetry and isotopic spin invariance these three 
processes can be described by a common amplitude, and there is really only one free 
parameter. The plots on figures 36 and 37 show the fit to all three channels-figure 38 
shows some resonance decay angular distributions, fitted with the amplitude. These 
angular distributions are, however, a consequence of the pseudoscalar kinematic factor 
and not of the Vereziano amplitude itself. By using further the technique described 

A rather complete review of applications of the Veneziano five point amplitude to three-body final states 
has been given by Schreiber (1971). 
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I , ,  , I , , , ,  

1 3 5 7 9  
P,ob (GeV/c) 

Figure 37. Total cross sections for the three processes illustrated in figure 36 fitted with a 
common amplitude. Agreement for the third process is out by a factor of about 2, but the 
shape is right. K'p + Korr+p;  A K - p  + K'x-p; rr-p + K'K-p. 

5 GeVlc A++ K+p-Kon+p  

5 GeVIc K"' Kfp-Ko w +  p 

- I  0 I O  w 2n 
0 9 

6 GeVlc K"- K D - R ' w - ~  

o'lholl -1.0 0 1.0 0 w 2n 

Figure 38. Resonance decay angular distributions for the processes indicated. Full curves 
are the predictions of the eight-point amplitude used by Chan Hong-Mo (1970). 
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above of connecting the five point amplitude to the four point function which is the 
residue at the leading pole, Peterson and Thomas (1970) have evaluated the predictions 
of the model for the following four processes with no further parameters : 

k-p  -,Eon 7c-p -+ koAo 

k'n + kop k-n + 7c- A.  

The comparison with experiment for the total cross sections is shown in figure 39. The 
agreement in all these cases is really remarkably good. There is no doubt that the 
description, albeit rather rough, of so much data, representing the amplitude in un- 
connected regions of the complex parameter space, and involving quite distant analytic 
continuations of the amplitude, represents a degree of success which cannot be taken 
lightly. 

t 

4 2 4 6 1 0  
Y 

,bL (GeVlc) 

Figure 39. Total cross sections for two-body processes related to the three processes 
illustrated in figures 37 and 38 by factorization. The full curves are the calculations of 
Peterson and Thomas( 1970) using the amplitude of Chan Hong-Mo (1970) with no additional 
parameters. (a) K - p  + K'n; (b)  K'n K'p; (c) n - p  + KOA'; (d )  K - n  --t n - A .  

17. Dual diffractive models 

For reasons that go beyond the limits of this review, the Veneziano model can be applied 
only with linear rising trajectories. This means that it is incapable of describing processes 
where the pomeron contributes. If, however, we assume that the pomeron exchange 
can be factorized as if it were a pole term, we should be able to write for a dissociation 
process illustrated in figure 40 which also defines the notation 

T = F,(tp,)sF,(~,,, tab). 

The function F ,  is a form factor for the proton, and F ,  is the description of the dynamics 
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200- 

of the excited 'fireball'. s is the 'propagator' for the pomeron ; if we assume a normal 
Regge description we shall use s' where U, being the trajectory function for the flat 
pomeron is just 1. For the top vertex it is appealing to take a Veneziano form, since 
this gives a simultaneous description of the resonance production by pomeron exchange, 
and the Deck processes described earlier. A model of this type was used by Pokorski 
and Satz (1970) to describe the dissociation of the nucleon, F2 being a suitably chosen 
combination of B ,  terms. The results, shown in figure 41 are quite pleasing. However, 

I , 
Figure 40. The dual diffractive model of Pokorski and Satz (1970). 

0.8 

Figure 41. Predicted effective mass plot for nucleon dissociation compared with results for 
pp + pnx' according to the model of Pokorski and Satz. 

they suffer from the difficulties always associated with baryon trajectories in the 
Veneziano model. Dissociation of a pseudoscalar meson into two particles by dif- 
fraction is not possible if we assume the pomeron to behave like a 0' particle. To 
describe the diffractive dissociation of the k meson, Bartsch et a1 (1970a) used a B ,  
amplitude at the upper vertex. The predictions of the calculation include a description 
of the Q and L mesons as Regge recurrences of the kaon, and a description of the decay 
of these objects in terms of the distributions on the Dalitz plot which seem remarkably 
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1 t,,, I < 0.6 GeV' 

K" 1420 events 

1.5 2.0 2.5 
Effect ive mass (GeV) 

Figure42.Effective mass plot for the (Knn) system in K - p  + ( K - n + x - ) p  at 10GeV/c. 
The broken curve shows the predictions of the dual diffractive model (Bartsch et al1970a). Q 
and L represent the positions of the resonances known by these names. 

Figure 43. Dalitz plot distributions for (a) the Q region and (b )  the L region using the dual 
diffractive model (Bartsch et a/ 1970a). The left hand sides of each are the predicted and the 
right hand sides the experimental plots. 
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good. These results are reproduced on figures 42 and 43. A similar description of the 
pion dissociation has been given by Hirschfield and Shah (1970). 

The description of nucleon dissociation into a nucleon and pion given by the 
Pokorski-Satz model offers a means of describing the pomeron contributions to the 
processes such as k* + p + k * + no + p, or k' + 71 i. + n. In these cases, at the energies 
achieved so far, the pomeron effects are appreciable but not dominant, as we saw in 
$5 8 to 10. There have been two attempts to combine a diffractive amplitude obtained 
from the Pokorski-Satz model with a conventional B ,  amplitude, so as to get a correct 
overall description of the channel. The estimates of the fraction of each amplitude 
required give the relative importance of the pomeron contribution as between 25 and 
50% in the 10 GeV/c region. Figure 44 shows the calculation of Kajanti and 

I 

2 1  I; 
]i* * I  i 

I t  ; 

P,,, ( G e V / c )  

Figure 44. The calculations of Kajanti and Papagiorgiou. The lower curve is the prediction 
of the B ,  amplitude chosen to describe K - p  + K-n'p. The broken curve is the prediction 
of the dual diffractive model with pomeron exchange. The combined cross section is the 
upper full curve. 

. 

I 2 3 4 I 2 3 4 
E f f e c t i v e  mas; (GeV) 

Figure 45. Calculation similar to that shown in figure 44 (from Bartsch e t  al 1970b) for the 
case K - p  + n K - n + .  The curves are effective mass distributions for (a) n n +  : ( h )  n K -  and 
(c) K - n + .  
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Papagiorgiou (1970), showing how the cross section is built up of pomeron exchange 
and dual parts. The other similar calculation (Bartsch et a1 1970b) is illustrated in 
figure 45. 

18. Conclusion 

We have reviewed briefly a wide range of results on multiparticle states. I t  is evident that 
these complex processes are not yet fully understood and present many interesting 
problems. However, considerable progress has been made in recent years in providing 
a reasonable phenomenological description of many important features. To keep the 
article of reasonable size the work of many authors has been left out, and no discussion 
has been included of thermodynamic models or other statistical models of hadron 
dynamics, which form a large enough topic for a review of their own. 
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